Error Estimates for the Lax — Friedrichs Scheme for Balance Laws
نویسنده
چکیده
In this paper we extend the result from [9] (V. Jovanović, C. Rohde, Error estimates for finite volume approximations of classical solutions for nonlinear systems of balance laws, SIAM J. Numer. Anal., 43 (2006)), where, among other things, an h — error estimate in the L — norm for the elastodynamics system has been established. We first derive the general error estimate from [9, Theorem 4.4] in a setting, which is better suited for one – dimensional balance laws and afterwards we apply it to the elastodynamics system with source and to the isentropic Euler system with damping. 2000 Mathematics Subject Classification: 65M12, 35L60.
منابع مشابه
A priori error estimates for approximate solutions to convex conservation laws
We introduce a new technique for proving a priori error estimates between the entropy weak solution of a scalar conservation law and a finite–difference approximation calculated with the scheme of EngquistOsher, Lax-Friedrichs, or Godunov. This technique is a discrete counterpart of the duality technique introducedbyTadmor [SIAMJ.Numer.Anal. 1991]. The error is related to the consistency error ...
متن کاملWater hammer simulation by explicit central finite difference methods in staggered grids
Four explicit finite difference schemes, including Lax-Friedrichs, Nessyahu-Tadmor, Lax-Wendroff and Lax-Wendroff with a nonlinear filter are applied to solve water hammer equations. The schemes solve the equations in a reservoir-pipe-valve with an instantaneous and gradual closure of the valve boundary. The computational results are compared with those of the method of characteristics (MOC), a...
متن کاملOn Convergence of Minmod-Type Schemes
A class of non-oscillatory numerical methods for solving nonlinear scalar conservation laws in one space dimension is considered. This class of methods contains the classical Lax-Friedrichs and the second order Nessyahu-Tadmor scheme. In the case of linear flux, new l2 stability results and error estimates for the methods are proved. Numerical experiments confirm that these methods are one-side...
متن کاملError Estimates for the Staggered Lax-Friedrichs Scheme on Unstructured Grids
Staggered grid finite volume methods (also called central schemes) were introduced in one dimension by Nessyahu and Tadmor in 1990 in order to avoid the necessity of having information on solutions of Riemann problems for the evaluation of numerical fluxes. We consider the general case in multidimensions and on general staggered grids which have to satisfy only an overlap assumption. We interpr...
متن کاملA Two-Dimensional Version of the Godunov Scheme for Scalar Balance Laws
A Godunov scheme is derived for two-dimensional scalar conservation laws without or with source terms following ideas originally proposed by Boukadida and LeRoux [9] in the context of a staggered Lax-Friedrichs scheme. In both situations, the numerical fluxes are obtained at each interface of a uniform Cartesian computational grid just by means of the “external waves” involved in the entropy so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008